Computationally semi-numerical technique for solving system of intuitionistic fuzzy differential equations with engineering applications
نویسندگان
چکیده
Some complex problems in science and engineering are modeled using fuzzy differential equations. Many equations cannot be solved by exact techniques because of the complexity mentioned. We utilize analytical to solve a system they simple use frequently result closed-form solutions. The Generalized Modified Adomian Decomposition Method is developed this article compute solution linear intuitionistic triangular initial value problems. starting values case thought as numbers. Engineering examples, such Brine Tanks Problem, used demonstrate proposed approach show how series converges closed form or series. corresponding graphs at different levels uncertainty example’s numerical outcomes. graphical representations further effectiveness accuracy method comparison Taylor’s approaches classical method.
منابع مشابه
A Numerical Method for Solving Fuzzy Differential Equations With Fractional Order
In this paper we present a numerical method for fuzzy differential equation of fractional order under gH-fractional Caputo differentiability. The main idea of this method is to approximate the solution of fuzzy fractional differential equation (FFDE) by an implicit method as corrector and explicit method as predictor. This method is tested on numerical examples.
متن کاملA Numerical Approach for Solving Forth Order Fuzzy Differential Equations Under Generalized Differentiability
In this paper a numerical method for solving forth order fuzzy dierentialequations under generalized differentiability is proposed. This method is basedon the interpolating a solution by piecewise polynomial of degree 8 in the rangeof solution . We investigate the existence and uniqueness of solutions. Finally anumerical example is presented to illustrate the accuracy of the new technique.
متن کاملA Numerical Method For Solving Ricatti Differential Equations
By adding a suitable real function on both sides of the quadratic Riccati differential equation, we propose a weighted type of Adams-Bashforth rules for solving it, in which moments are used instead of the constant coefficients of Adams-Bashforth rules. Numerical results reveal that the proposed method is efficient and can be applied for other nonlinear problems.
متن کاملA Genetic Programming-based Scheme for Solving Fuzzy Differential Equations
This paper deals with a new approach for solving fuzzy differential equations based on genetic programming. This method produces some trial solutions and seeks the best of them. If the solution cannot be expressed in a closed analytical form then our method produces an approximation with a controlled level of accuracy. Furthermore, the numerical results reveal the potential of the proposed appr...
متن کاملA NEW ANALYTICAL METHOD FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS
In the literature, several numerical methods are proposed for solvingnth-order fuzzy linear differential equations. However, till now there areonly two analytical methods for the same. In this paper, the fuzzy Kolmogorov'sdifferential equations, obtained with the help of fuzzy Markov modelof piston manufacturing system, are solved by one of these analytical methodsand illustrated that the obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mechanical Engineering
سال: 2022
ISSN: ['1687-8132', '1687-8140']
DOI: https://doi.org/10.1177/16878132221142128